Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931916PMC
http://dx.doi.org/10.1364/OL.42.005026DOI Listing

Publication Analysis

Top Keywords

babinet's principle
16
arbitrary particle
8
diffraction
5
babinet's
4
principle diffraction
4
diffraction associated
4
associated arbitrary
4
particle babinet's
4
principle compute
4
compute diffraction
4

Similar Publications

The utilization of microwave radiation has gained increasing importance in various biological applications. However, a significant challenge remains in the interaction between the microwaves and the human skin, primarily due to the impedance mismatch. Recently, the employment of split-ring resonator (SRR) topologies has become increasingly prevalent for addressing such a problem.

View Article and Find Full Text PDF

In this paper, a novel input impedance analysis methodology based on Babinet's principle to broaden bandwidth is proposed, and a broadband multiple-input and multiple-output (MIMO) antenna system is designed, fabricated, and measured for fifth-generation (5G) and Wireless Fidelity (Wi-Fi) 6E/7 mobile applications. By analyzing the input impedance of open-slot antennas and planar monopole antennas using numerical calculations, the characteristics of the input impedance can be obtained. We find that combining the two antenna types in parallel can significantly enhance the bandwidth.

View Article and Find Full Text PDF

Plasmonic sensing using Babinet's principle.

Nanophotonics

October 2023

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.

Developing methods to sense local variations in properties of nearby materials, such as their refractive index and thickness, are important in numerous fields including chemistry and biomedical applications. Localized surface plasmons (LSPs) excited in plasmonic nanostructures have been demonstrated to be useful in this context due to the spectral location of their associated resonances being sensitive to changes in the environment near the plasmonic structures. This manuscript explores Babinet's principle by exploiting LSP resonances excited in complementary metal-dielectric cylindrical plasmonic structures (plasmonic particle-dimers and aperture-dimers in our case).

View Article and Find Full Text PDF

We fabricated a rigid bandpass filter with a broad far-infrared wavelength range of high transmission using a silicon subwavelength structure with a Babinet complementary metamaterial half-mirror pair, despite its apparent light-blocking structure. The rigid one-piece filter was produced by a simple process involving photolithography, dry etching, and deposition, each performed only once. The transmission principle relies on the Fabry-Perot resonance with a metamaterial half-mirror pair that exhibits extraordinary optical transmission due to spoof surface plasmon polaritons.

View Article and Find Full Text PDF

Anisotropic Self-Complementary Metasurfaces (SC-MTSs) are structures constituted by an alternation of complementary inductive and capacitive strips, which are "self-dual" according to Babinet's duality principle. They support the propagation of two orthogonally polarized surface-wave modes with the same phase velocity along the principal directions (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!