We use a recent computer implementation of the first-principles theory of electromagnetic scattering to compute far-field extinction by a spherical particle embedded in an absorbing unbounded host. Our results show that the suppressing effect of increasing absorption inside the host medium on the ripple structure of the extinction efficiency factor as a function of the size parameter is similar to the well-known effect of increasing absorption inside a particle embedded in a nonabsorbing host. However, the accompanying effects on the interference structure of the extinction efficiency curves are diametrically opposite. As a result, sufficiently large absorption inside the host medium can cause negative particulate extinction. We offer a simple physical explanation of the phenomenon of negative extinction consistent with the interpretation of the interference structure as being the result of interference of the field transmitted by the particle and the diffracted field due to an incomplete wavefront resulting from the blockage of the incident plane wave by the particle's geometrical projection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.004873 | DOI Listing |
Int J Biol Macromol
January 2025
Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China. Electronic address:
Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany.
X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, School of Architecture, Southeast University, 2# Sipailou, Nanjing, 210096, China.
This paper presents a microperforated panel (MPP) sound absorber with parallel coiled-up-cavities of different-depths (PCD) and the corresponding optimization on their cavities. In this study, an analytical model is initially proposed for estimating the cavity depths of the PCD-MPP absorber upon normal incidence absorption coefficient evaluation at given resonance frequencies. Cavity effective depths and normal incidence absorption coefficient are evaluated after coiling up cavities for a compact structure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, Aarhus University, Aarhus, 8200, Denmark.
Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!