Microplasma is generated in an ultra-high-pure H and N gas mixture with a Nd:YAG laser device that is operated at the fundamental wavelength of 1064 nm. The gas mixture ratio of H and N is 9 to 1 at a pressure of 1.21 ± 0.03 10 Pa inside a chamber. A Czerny-Turner-type spectrometer and an intensified charge-coupled device are utilized for the recording of plasma emission spectra. The line-of-sight measurements are Abel inverted to determine the radial distributions of electron number density and temperature. Recently derived empirical formulas are utilized for the extraction of values for electron density. The Boltzmann plot and line-to-continuum methods are implemented for the diagnostic of electron excitation temperature. The expansion speed of the plasma kernel maximum electron temperature amounts to 1 km/s at a time delay of 300 ns. The microplasma, initiated by focusing 14 ns, 140 mJ pulses, can be described by an isentropic expansion model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.009277 | DOI Listing |
Energy Fuels
January 2025
PolySense Lab, Dipartimento Interateneo di Fisica, University and Polytechnic of Bari, Via Amendola 173, Bari 70126, Italy.
A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.
View Article and Find Full Text PDFSci Rep
January 2025
Forestry and Wood Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt.
The insecticidal, synergistic, and acetylcholinesterase (AChE) inhibitory effects of plant n-hexane extracts (HEs) were evaluated. The HEs from thyme (Thymus vulgaris L.) leaves, garlic (Allium sativum L.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!