A numerical simulation of third-order cascaded Raman fiber laser based on tellurite fiber at the 2-5 μm waveband is presented. The Raman fiber laser can be optimized with the most suitable tellurite fiber length of 0.5-1.0 m and the most reasonable reflectivity of the third-order Stokes output FBG32 of 10%-20%. We demonstrate numerically that the third-order Stokes wave can reach the maximum average power of 45.2 W and the maximum optical conversion efficiency of 45.2%, corresponding to the FBG32 reflectivity of 10% and the tellurite fiber length of 0.3 m with the attenuation of 0.85 dB/m, when pumped by 2 μm light with the average power of 100 W. Our simulated results provide valuable theoretical guidance for the design and experiment of tellurite Raman fiber laser at a mid-infrared waveband.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.009171DOI Listing

Publication Analysis

Top Keywords

raman fiber
16
fiber laser
16
tellurite fiber
16
cascaded raman
8
fiber
8
laser based
8
based tellurite
8
fiber length
8
third-order stokes
8
average power
8

Similar Publications

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Coexistence Demonstration and Wavelength Dependency Analysis of S-Band CV-QKD Signal with Fully Loaded C+L-Band DWDM Signals.

Entropy (Basel)

January 2025

Advanced Network Research Laboratories, NEC Corporation, Kawasaki 211-8666, Kanagawa, Japan.

We demonstrated the coexistence of an S-band CV-QKD signal with fully loaded C+L-band classical signals for the first time. The secret key rate of the S-band QKD system was 986 kbps with the C+L-band WDM signals transmitted through a 20 km G.654.

View Article and Find Full Text PDF

Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.

View Article and Find Full Text PDF

Availability of a suitable tool for carrying out non-invasive measurement of Raman signatures in situ, from biological tissues having low Raman cross section is a clinically unmet need faced with manifold challenges. A Raman probe can prove to be an invaluable component of clinical Raman diagnostic systems. We present development of a Raman probe capable of measuring artefact free Raman spectra of biological tissues in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!