Continuous wave lasing in the visible spectral region from a molecular iodine-filled hollow core photonic crystal fiber is demonstrated. More than an order of magnitude improvement in photon conversion efficiency has been achieved compared to previous nonfiber-based geometries in this spectral region. The laser shows strong coupling of pump and laser polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.009592DOI Listing

Publication Analysis

Top Keywords

photon conversion
8
conversion efficiency
8
continuous wave
8
wave lasing
8
spectral region
8
high photon
4
efficiency continuous
4
lasing optically
4
optically pumped
4
pumped hollow
4

Similar Publications

The controlled growth of two-dimensional (2D) perovskite atop three-dimensional (3D) perovskite films reduces interfacial recombination and impedes ion migration, thus improving the performance and stability of perovskite solar cells (PSCs). Unfortunately, the random orientation of the spontaneously formed 2D phase atop the pre-deposited 3D perovskite film can deteriorate charge extraction owing to energetic disorder, limiting the maximum attainable efficiency and long-term stability of the PSCs. Here, we introduce a meta-amidinopyridine ligand and the solvent post-dripping step to generate a highly ordered 2D perovskite phase on the surface of a 3D perovskite film.

View Article and Find Full Text PDF

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter.

Micromachines (Basel)

January 2025

School of Physics and Optoelectronic Engineering, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China.

To enhance the end-face coupling efficiency of lithium niobate on insulator (LNOI) chips, in conjunction with current device fabrication processes, a stepped spot size converter (SSC) based on a special outer envelope profile has been proposed and investigated. This stepped SSC can reduce the coupling loss between the LNOI waveguide and a normal single-mode optical fiber. First, the output waveguide of a mode converter was proposed and simulated, in which the mode field had the biggest overlapping integral factor with a single-mode fiber (MDF ≈ 9.

View Article and Find Full Text PDF

Metasurface-Coated Liquid Microlens for Super Resolution Imaging.

Micromachines (Basel)

December 2024

State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710054, China.

Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!