The transverse spatial intensity distribution of elastic and inelastic light scattering in passive and active as well as weak and strong scattering liquid media has been studied by using Sphelar One p-n junction silicon spherical photocells. We immersed a Sphelar One in these scattering solutions and measured the photoconductive response in reverse biased photodiode (PD) configuration. The passive weak scattering medium was pure ethanol (EtOH), whereas the passive strong scattering medium was 5CB nematic liquid crystal (NLC). Solutions of 0.1 mM Rhodamine 640 perchlorate laser dye in EtOH and in 5CB NLC were used as active scattering media. The response of Sphelar One was strongly enhanced in 5CB NLC compared to EtOH, as well as in active solutions compared to passive solutions. The morphology of the Sphelar One is already advantageous over conventional one-sided planar PDs inside liquid solutions. This omnidirectional response of the Sphelar One can further be enhanced by optimizing the properties of the surrounding passive elastic and active inelastic scatterers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.009384 | DOI Listing |
J Acoust Soc Am
January 2025
School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
In shallow water, reverberation complicates the detection of low-intensity, variable-echo moving targets, such as divers. Traditional methods often fail to distinguish these targets from reverberation, and data-driven methods are constrained by the limited data on intruding targets. This paper introduces the online robust principal component analysis and multimodal anomaly detection (ORMAD) method to address these challenges.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland.
A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
East Slovak Institute of Cardiovascular Diseases and School of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
Background: Echocardiography is widely used to assess aortic stenosis (AS) but can yield inconsistent results, leading to uncertainty about AS severity and the need for further diagnostics. This retrospective study aimed to evaluate a novel echocardiography-based marker, the signal intensity coefficient (SIC), for its potential in accurately identifying and quantifying calcium in AS, enhancing noninvasive diagnostic methods.
Methods: Between May 2022 and October 2023, 112 cases of AS that were previously considered severe by echocardiography were retrospectively evaluated, as well as a group of 50 cases of mild or moderate AS, both at the Eastern Slovak Institute of Cardiovascular Diseases in Kosice, Slovakia.
Sci Rep
January 2025
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Multiple active mining faces and extensive excavations under thick-hard strata in deep coal mines result in frequent strong mine earthquakes, often accompanied by significant surface subsidence deformation. Understanding the specific law of surface movement and the spatiotemporal distribution response to intense mine earthquakes is crucial for effectively preventing and mitigating dynamic disasters in deep mines. Utilizing the key layer theory, the intricate strata of the Yingpanhao Coal Mine are systematically delineated, drawing upon the engineering context of working faces 2201 and 2202 within the Ordos Chemical Co.
View Article and Find Full Text PDFSci Rep
January 2025
Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei Province, China.
As a key food production base, land use changes in the Jianghan Plain (JHP) significantly affect the surface landscape structure and ecological risks, posing challenges to food security. Assessing the ecological risk of the JHP, identifying its drivers, and predicting the risk trends under different scenarios can provide strategic support for ecological risk management and safeguarding food security in the JHP. In this study, the landscape ecological risk (LER) index was constructed by integrating landscape indices from 2000 to 2020, firstly analyzing its spatiotemporal characteristics, subsequently identifying the key influencing factors by using the GeoDetector model, and finally, simulating the risk changes under the four scenarios by using the Markov-PLUS model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!