Obtaining high-precision filtering results from airborne lidar point clouds in complex environments has always been a hot topic. Mathematical morphology was widely used for filtering, owing to its simplicity and high efficiency. However, the morphology-based algorithms are deficient in preserving terrain details. In order to obtain a better filtering effect, this paper proposed an improved progressive morphological filter based on hierarchical radial basis function interpolation (PMHR) to refine the classical progressive morphological filter. PMHR involved two main improvements, namely, automatic setting of self-adaptive thresholds and terrain details preservation, respectively. The performance of PMHR was evaluated using datasets provided by the International Society for Photogrammetry and Remote Sensing. Experimental results show that PMHR achieved good performance under variant terrain features with an average total error of 4.27% and average Kappa coefficient of 84.57%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.009359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!