Hierarchical nanostructures with heteroatom doping have been considered as an important component in electrode materials for advanced supercapacitors. Herein, with the aid of C, N, and S codoped NiCo(CO)(OH)/C (NSH) with a hierarchical structure was synthesized through a facile one-step hydrothermal method. Notably, it is the first report on a carbon precursor as a structure inducer for designing a three-dimensional (3D) carnation-like hierarchical structure. Thanks to the carbon induction effect and the introduction of N/S dopants, the obtained NSH with a 3D architecture exhibits superior performances as electrode materials for supercapacitors. For example, NSH offers a high specific capacity of 277.3 mAh/g at 0.5 A/g. Moreover, the assembled NSH//reduced graphene oxide hydrogel-based hybrid supercapacitor exhibits high energy densities of 44.4 and 11.7 Wh/kg at power densities of 460 W/kg and 9.8 kW/kg, respectively. This result opens up opportunities for carbon-induced methods to control the morphology and structure of other similar materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b12490 | DOI Listing |
Mikrochim Acta
January 2025
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.
Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.
This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!