Multiple sclerosis is a highly prevalent chronic demyelinating disease of the central nervous system. Remyelination is the major therapeutic goal for this disorder. The lack of detailed knowledge about the cellular and molecular mechanisms involved in myelination restricts the design of effective treatments. A recent study by using [De La Fuente et al. (2017) Cell Reports, 20(8): 1755-1764] by using state-of-the-art techniques, including pericyte-deficient mice in combination with induced demyelination, reveal that pericytes participate in central nervous system regeneration. Strikingly, pericytes presence is essential for oligodendrocyte progenitors differentiation and myelin formation during remyelination in the brain. The emerging knowledge from this research will be important for the treatment of multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076852PMC
http://dx.doi.org/10.1002/jcp.26348DOI Listing

Publication Analysis

Top Keywords

central nervous
12
nervous system
12
multiple sclerosis
8
pericytes modulate
4
modulate myelination
4
myelination central
4
system multiple
4
sclerosis highly
4
highly prevalent
4
prevalent chronic
4

Similar Publications

The intergenerational transmission of psychopathology has been well documented, but limited studies have examined the link at the symptomatic level accounting for these associations. This study aimed to identify the central symptoms that bridge adolescents and parental psychopathological symptoms and the specific symptom pathways by using a novel network approach. From September to October 2021, a cross-sectional study was conducted in Wuhan, China.

View Article and Find Full Text PDF

Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.

View Article and Find Full Text PDF

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.

View Article and Find Full Text PDF

Neuroimmune signalling pathways in chronic rhinosinusitis with nasal polyps.

Curr Opin Allergy Clin Immunol

February 2025

Specialist Allergy and Clinical Immunology, Rhinology Section, Royal National ENT and Eastman Dental Hospitals, University College London Hospitals NHS Foundation Trust, London, UK.

Purpose Of Review: To evaluate the role of neuroimmune signalling pathways in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP).

Recent Findings: The sinonasal mucosa is densely infiltrated by immune cells and neuronal structures that share an intimate spatial relationship within tissue compartments. Together, such neuroimmune units play a critical role in airway defence and homeostatic function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!