Map and correlate intracellular calcium response and matrix deposition in cartilage under physiological oxygen tensions.

J Cell Physiol

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China.

Published: June 2018

Face to the limited repair capability of cartilage, we intended to find out signaling responsible for its matrix synthesis. Since spontaneous calcium response likes a label of cell status, here it was mapped in fresh and 24 hr cultured in situ chondrocytes under oxygen tensions of 20%, 5%, and 1% as well as mimic hypoxia conditions. The calcium source was traced using ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and thapsigargin (TG) to treat cartilage. Their relative matrix of type II collagen (COLL-II) and glycosaminoglycan (GAG) were quantified after cultured for 3 and 7 days. We disclosed the specific fingerprint of calcium response and matrix deposition along the histological zones under various oxygen tensions, from which the effects of hyperoxia, normoxia, and hypoxia conditions on as well as the optimal oxygen tensions for maintenance of various zones of cartilage or chondrocytes were derived and obtained. Our results revealed that cytoplasm calcium was conducive to synthesize COLL-II but detrimental to synthesize GAG. These results provide correlation in addition to details of intracellular calcium response and matrix deposition in in situ cartilage along its histological zones under physiological oxygen tensions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26326DOI Listing

Publication Analysis

Top Keywords

oxygen tensions
20
calcium response
16
response matrix
12
matrix deposition
12
intracellular calcium
8
physiological oxygen
8
hypoxia conditions
8
histological zones
8
calcium
6
matrix
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!