Due to the continued persistence of waterborne viral-associated infections, the presence of enteric viruses is a concern. Notwithstanding the health implications, viral diversity and abundance is an indicator of water quality declination in the environment. The aim of this study was to evaluate the presence of viruses (bacteriophage and enteric viruses) in a highly polluted, anthropogenic-influenced river system over a 6-month period at five sampling points. Cytopathic-based tissue culture assays revealed that the isolated viruses were infectious when tested on Hep-G2, HEK293 and Vero cells. While transmission electron microscopy (TEM) revealed that the majority of the viruses were bacteriophages, a number of presumptive enteric virus families were visualized, some of which include Picornaviridae, Adenoviridae, Polyomaviridae and Reoviridae. Finally, primer specific nested polymerase chain reaction (nested-PCR)/reverse transcription-polymerase chain reaction (RT-PCR) coupled with BLAST analysis identified human adenovirus, polyomavirus and hepatitis A and C virus genomes in river water samples. Taken together, the complexity of both bacteriophage and enteric virus populations in the river has potential health implications. Finally, a systematic integrated risk assessment and management plan to identify and minimize sources of faecal contamination is the most effective way of ensuring water safety and should be established in all future guidelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2017.066 | DOI Listing |
Appl Environ Microbiol
December 2024
CREM Co. Labs., Mississauga, Ontario, Canada.
An air sanitizer was evaluated using an aerobiology protocol, compliant with the U.S. Environmental Protection Agency's Air Sanitizer Guidelines, for virucidal activity against bacteriophages Phi6 and MS2 (used as surrogates for enveloped and non-enveloped human pathogenic viruses).
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai-400076, India; Center for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, Mumbai-400076, India; Interdiscliniplary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai-400076, India; Center of Excellence on Membrane Technologies for Desalination, Brine Management and Water Recycling (DESALTM), Indian Institute of Technology Bombay, Mumbai-400076, India. Electronic address:
Sci Total Environ
December 2024
Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada. Electronic address:
The COVID-19 pandemic has underscored the need for effective viral tracking in aqueous environments, particularly for non-enteric viruses. Despite advances in wastewater monitoring, surveillance of viruses in freshwater remains limited due to traditional sampling challenges. This study refines GAC-based passive sampling protocols by determining optimal extraction and elution methods for enhancing the recovery of viral nucleic acids in freshwater.
View Article and Find Full Text PDFViruses
November 2024
ICMR-National Institute for Research in Bacterial Infections (Formerly "ICMR-National Institute of Cholera and Enteric Diseases"), P33, CIT Road, Scheme XM Beliaghata, Kolkata 700010, India.
The growing prevalence of antimicrobial resistance (AMR) necessitates the development of new treatment methods to combat diseases like cholera. Lytic bacteriophages are viruses that specifically target and lyse bacteria upon infection, making them a possible treatment option for multi-drug-resistant pathogens. The current study investigated the potential role of bacteriophages isolated from clinical stool and sewage water samples in treating multi-drug-resistant infection, finding that over 95% of the strains were susceptible.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, 130118, China; Borui Technology Co., Ltd., Changchun, 130000, China. Electronic address:
Aeromonas hydrophila was a common opportunistic pathogen that was widely found in various aquatic environment and could cause multiple infections in humans and animals. The haemorrhagic septicemia and bacterial enteritis in fish triggered by this pathogen led to significant losses in the aquaculture industry. In this study, we aimed to develop a phage lysate vaccine by lysing the A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!