A new rapid, sensitive and selective method for rotavirus detection in water samples is described in this paper. Amino pink magnetic microparticles were functionalized with monoclonal antibodies and used to capture, concentrate, separate and detect infectious rotavirus particles in distilled and drinking water samples. The fluorescence of the microparticles was used to determine the presumptive presence of rotaviruses by using confocal microscopy. Atomic force microscopy and transmission electron microscopy were used to confirm the presence of the anti-rotavirus antibodies attached to the surface of the magnetic microparticles as well as that of viruses attached through the antibody. In addition, RNA extraction, quantification and amplification were carried out to validate the microscopic observations. The selectivity of the microparticles was tested in a sample containing a mix of enteric viruses. It was concluded that functionalizing fluoromagnetic microparticles with anti-rotavirus monoclonal antibodies constituted a fast, simple and reliable technique for detecting as low as 10 Rotavirus particles in 1 L of artificial or real water in just 2 hours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2017.028 | DOI Listing |
Can J Microbiol
January 2025
Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada;
Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.
View Article and Find Full Text PDFPLoS One
January 2025
Alliance for Research in Exercise Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
Background: Cold-water immersion (CWI) has gained popularity as a health and wellbeing intervention among the general population.
Objective: This systematic review and meta-analysis aimed to evaluate the psychological, cognitive, and physiological effects of CWI in healthy adults.
Methods: Electronic databases were searched for randomized trials involving healthy adults aged ≥ 18 years undergoing acute or long-term CWI exposure via cold shower, ice bath, or plunge with water temperature ≤15°C for at least 30 seconds.
Integr Environ Assess Manag
January 2025
Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States.
This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Federal University of the Agreste of Pernambuco, Garanhuns, Brazil.
The proliferation of cyanobacteria has become a significant water management challenge due to the increasing eutrophication of water supply reservoirs. Cyanobacterial blooms thrive on elevated nutrient concentrations and form extensive green mats, disrupting the local ecosystem. Furthermore, many cyanobacterial species can produce toxins that are lethal to vertebrates called cyanotoxins.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of New Brunswick, UNB MRI Centre, Department of Physics, Fredericton, New Brunswick, E3B 5A3, Canada.
We observe divergent temperature-dependent magnetic resonance relaxation behaviors across various brine-saturated porous materials. The paramagnetic and diamagnetic nature of the samples underlies these divergent behaviors. The temperature-dependent trends of the longitudinal T_{1} and transverse T_{2} relaxation times are systematically explained via distinct relaxation-diffusion regimes of Brownstein-Tarr theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!