We previously reported the contribution of sodium-phosphate cotransporter to the tubular reabsorption of lithium in rats. In the present study, the dose dependency of the renal handling of lithium was examined in rats. When lithium chloride at 1.25 mg/kg, 2.5 mg/kg and 25 mg/kg was intravenously injected as a bolus, the areas under the plasma concentration-time curve of lithium until 60 minutes were calculated to be 6.23 mEq·min/l, 8.77 mEq·min/l and 64.6 mEq·min/l, respectively. The renal clearance of lithium and its fractional excretion increased with increments in the dose administered. The renal clearance of lithium strongly correlated with the urinary excretion rate of phosphate in the 1.25 mg/kg group (r = 0.840) and 2.5 mg/kg group (r = 0.773), whereas this correlation was weak in the 25 mg/kg group (r = 0.306). The infusion of foscarnet, a typical inhibitor of sodium-phosphate cotransporter, decreased the fractional reabsorption of lithium in rats administered lithium chloride at 2.5 mg/kg, but did not affect it in rats administered 25 mg/kg. These results demonstrate the nonlinearity of the renal excretion of lithium in rats, with the saturation of lithium reabsorption by the sodium-phosphate cotransporter potentially being involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.2116DOI Listing

Publication Analysis

Top Keywords

lithium rats
16
sodium-phosphate cotransporter
16
lithium
11
rats saturation
8
tubular reabsorption
8
reabsorption sodium-phosphate
8
reabsorption lithium
8
lithium chloride
8
renal clearance
8
clearance lithium
8

Similar Publications

Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

Epilepsy is a common brain function disorder. The present study aims to evaluate the long-term effect of perampanel (PRM) and lacosamide (LCM), administered singly in a high-dose or in a low-dose combination of both, on comorbid anxiety, cognitive impairment, BDNF, and Cyclin D1 hippocampal expression in an experimental model of temporal lobe epilepsy with lithium-pilocarpine. PRM (3 mg/kg, p.

View Article and Find Full Text PDF

Background: Lithium (Li) is widely used in the treatment of bipolar disorder, but it may lead to toxicity in the reproductive system. Considering the harmful effect of Li consumption on fertility and the positive effect of magnesium sulfate (MgSo) and moderate-intensity training (MIT) on improving the quality of men's sperm, the current research was conducted to determine the impact of MIT and MgSo on infertility caused by Li.

Materials And Methods: Seventy-two male rats were divided into 12 groups, control, Li10 mg/kg/day/ip, MgSo 80 mg/kg/day/ip; MIT; Li40 mg/kg/day/ip; Li10+MgSo; Li10+MIT; Li10+MgSo+MIT; Li40+MgSo; Li40+MIT; Li40+MgSo+MIT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!