Preparing for the Future of Rare Diseases.

Adv Exp Med Biol

RDR and CIBERER, Instituto de Salud Carlos III, Madrid, Spain.

Published: June 2018

Members of the rare disease community have devoted significant financial and personnel resources to address the numerous issues surrounding rare diseases. The past has been devoted to developing an emphasis on rare diseases including an emphasis on research studies or locating information on rare diseases and the requirements and limitations of conducting clinical trials with small patient populations. The expanded role of patient advocacy organizations and patient engagement in all aspects of clinical research continues to gain acceptance within the research community. The future will require a greater understanding and interpretation of available information from multiple sources including electronic health records and big data sources. The pipeline of potential orphan products continues to grow significantly and holds great promise for novel interventions due to advances in clinical trial design and data analyses. Expanding diagnostic procedures with improved sequencing methods will speed up the diagnosis or rare diseases. Accepting agreed upon nomenclature and codification of rare diseases will assist in differentiating diseases and identifying selected sub-populations of rare diseases. Improvements in patient recruitment and increased flexibility in the product review and approval procedures by regulatory agencies will facilitate product approvals. Children particularly will need help and assistance dealing with feelings of isolation from their peers due to their rare disease. During the transition from childhood to adolescence to adult, difficulties of fitting in with peers and not wanting to be different are a major concern. In response to increasing costs of treatments, Value-Based Care is gaining greater acceptance by the reimbursement and the payer community as a basis for payment for interventions. Mobile Health (M-health) Technologies have the potential to revolutionize how clinical research is conducted in the future. Wearable devices, remote sensors, and the development of mobile device applications (apps) will all assist in constant monitoring of patients for safety and efficacy of approved and investigational compounds. Tele Health and Tele Medicine may provide the necessary access to expert clinicians with a better understanding of individual rare diseases. The future promises great advances and even greater personalized treatments with the introduction of novel treatments and approaches to care.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-67144-4_34DOI Listing

Publication Analysis

Top Keywords

rare diseases
32
rare
10
diseases
9
rare disease
8
will assist
8
will
6
preparing future
4
future rare
4
diseases members
4
members rare
4

Similar Publications

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

Refining the clinical and therapeutic spectrum of granulomatous myositis from a large cohort of patients.

J Neurol

January 2025

Sorbonne Université, Assistance Publique, Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France.

Objectives: Granulomatous myositis (GM) is a rare entity whose precise clinical features and therapeutic outcomes have not yet been well defined. Given the limited evidence, data from a large cohort of patients is needed to aid in the recognition and management of this condition.

Methods: We retrospectively analyzed our institutional databases to identify patients who had myositis and non-caseating granuloma on muscle biopsy (GM).

View Article and Find Full Text PDF

Cerebral vasculitis is a rare but severe manifestation of neurosarcoidosis (NS) that has received little attention. The aim of the present study was to characterize clinical and diagnostic features as well as potential treatment strategies of cerebral vasculitis related to NS. We assessed 29 patients with cerebral vasculitis related to NS (15 female, mean age at time of diagnosis 45 years, SD = 11.

View Article and Find Full Text PDF

Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!