The aim of this paper is to analyze the dynamical behavior of biological models of gene transcription and translation. We focus on a particular positive feedback loop governing the synthesis of RNA polymerase, needed for transcribing its own gene. We write a high-dimension model based on mass action laws and reduce it to a two-variable model (RNA polymerase and its mRNA) by means of monotone system theory and timescale arguments. We show that the reduced model has either a single globally stable trivial equilibrium in (0, 0), or an unstable zero equilibrium and a globally stable positive one. We give generalizations of this model, notably with a variable growth rate. The dynamical behavior of this system can be related to biological observations on the bacterium Escherichia coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-017-0372-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!