Comparison of human brain metabolite levels using 1H MRS at 1.5T and 3.0T.

Dement Neuropsychol

PhD, D'Or Institute for Research and Education (IDOR), Rio de Janeiro RJ, Brazil. Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro RJ, Brazil.

Published: January 2013

Unlabelled: Proton magnetic resonance spectroscopy (MRS) of the human brain has proven to be a useful technique in several neurological and psychiatric disorders and benefits from higher field scanners as signal intensity and spectral resolution are proportional to the magnetic field strength.

Objective: To investigate the effects of the magnetic field on the measurement of brain metabolites in a typical routine clinical setting.

Methods: Single voxel spectra were acquired from the posterior cingulate cortex in 26 healthy subjects. Each subject was scanned consecutively at 1.5T and 3.0T in a randomly distributed order.

Results: SNR and peak width improvements were observed at higher fields. However, SNR improvement was lower than the theoretical two-fold improvement. Other than the values obtained for creatine (Cre) and myo-Inositol (mI), which were both higher at 3.0T, all metabolite concentrations obtained were roughly the same at both field strengths. All the metabolite concentrations were estimated with a Cramer Rao lower bounds (CRLB) lower than 15% of the calculated concentrations.

Conclusions: Even though the present study supports the expected benefits of higher field strength for MRS, there are several factors that can lead to different quantitative results when comparing 1.5T to 3.0T MRS. Future comparative studies are necessary to refine the metabolite thresholds for early detection and quantification of distinct neurological and psychiatric disorders using 3.0T MRS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5619521PMC
http://dx.doi.org/10.1590/S1980-57642013DN70200013DOI Listing

Publication Analysis

Top Keywords

15t 30t
12
human brain
8
neurological psychiatric
8
psychiatric disorders
8
benefits higher
8
higher field
8
magnetic field
8
metabolite concentrations
8
30t
5
field
5

Similar Publications

Interference of titanium and zirconia implants on dental-dedicated magnetic resonance image quality: ex vivo and in vivo assessment.

Dentomaxillofac Radiol

December 2024

Section for Oral Radiology and Endodontics, Department of Dentistry and Oral Health, Aarhus University, Denmark.

Aim: To assess the impact of titanium and zirconia implants on dental-dedicated MR image (ddMRI) quality ex vivo (magnetic field distortion, MFD) and in vivo (artefacts).

Material And Methods: ddMR images were acquired (MAGNETOM Free.Max, 0.

View Article and Find Full Text PDF

Purpose: To evaluate ferumoxytol-enhanced magnetic resonance angiography (FE-MRA) for assessment of endoleaks in patients with abdominal aortic aneurysms (AAA) and chronic kidney disease (CKD) status post endovascular aneurysm repair (EVAR).

Methods: Of 1854 patients who underwent FE-MRA at a single institution between 03/21/2014 and 08/21/2023, 21 patients with a history of AAA and CKD status post EVAR were retrospectively identified (IRB #13-001341). Multiplanar pre- and post-contrast HASTE, T1-VIBE, and high-resolution breath-held 3D MRA sequences were obtained, where a dose of 4 mg/kg of Ferumoxytol was infused over six minutes.

View Article and Find Full Text PDF

Free-Breathing Ungated Radial Simultaneous Multi-Slice Cardiac T1 Mapping.

J Magn Reson Imaging

December 2024

Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.

Background: Modified Look-Locker imaging (MOLLI) T1 mapping sequences are acquired during breath-holding and require ECG gating with consistent R-R intervals, which is problematic for patients with atrial fibrillation (AF). Consequently, there is a need for a free-breathing and ungated framework for cardiac T1 mapping.

Purpose: To develop and evaluate a free-breathing ungated radial simultaneous multi-slice (SMS) cardiac T1 mapping (FURST) framework.

View Article and Find Full Text PDF

Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study.

J Clin Med

November 2024

University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair in Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.

. Post-coronavirus disease-2019 (COVID-19) patients may develop cardiac symptoms. We hypothesized that cardiovascular magnetic resonance (CMR) can assess the background of post-COVID-19 cardiac symptoms using multi-parametric evaluation.

View Article and Find Full Text PDF

Relaxivity and In Vivo Human Performance of Brand Name Versus Generic Ferumoxytol.

Invest Radiol

October 2024

From the Department of Radiology, University of Wisconsin-Madison, Madison, WI (R.A.V., D.T., J.R., S.B.R.); Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.V.); Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI (L.M.); Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI (J.R.); Department of Medical Physics, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.); and Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.).

Objectives: Ferumoxytol is a superparamagnetic iron-oxide product that is increasingly used off-label for contrast-enhanced magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA). With the recent regulatory approval of generic ferumoxytol, there may be an opportunity to reduce cost, so long as generic ferumoxytol has similar imaging performance to brand name ferumoxytol. This study aims to compare the relaxation-concentration dependence and MRI performance of brand name ferumoxytol with generic ferumoxytol through phantom and in vivo experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!