Pridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.5 months. In the late treatment cohort, animals were treated for 8 weeks with 0 mg/kg or an escalating dose of pridopidine (10 to 30 mg/kg over 3 weeks). Early treatment improved motor coordination and reduced anxiety- and depressive-like phenotypes in YAC128 mice, but it did not rescue striatal and corpus callosum atrophy. Late treatment, conversely, only improved depressive-like symptoms. RNA-seq analysis revealed that early pridopidine treatment reversed striatal transcriptional deficits, upregulating disease-specific genes that are known to be downregulated during HD, a finding that is experimentally confirmed herein. This suggests that pridopidine exerts beneficial effects at the transcriptional level. Taken together, our findings support continued clinical development of pridopidine for HD, particularly in the early stages of disease, and provide valuable insight into the potential therapeutic mode of action of pridopidine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752291PMC
http://dx.doi.org/10.1172/jci.insight.95665DOI Listing

Publication Analysis

Top Keywords

early pridopidine
8
pridopidine treatment
8
transcriptional deficits
8
huntington disease
8
pridopidine
8
clinical development
8
mode action
8
action pridopidine
8
stages disease
8
early treatment
8

Similar Publications

Sigma-1 receptor agonism exacerbates immune-driven nociception: Role of TRPV1 + nociceptors.

Biomed Pharmacother

November 2023

Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain. Electronic address:

The analgesic effects of sigma-1 antagonists are undisputed, but the effects of sigma-1 agonists on pain are not well studied. Here, we used a mouse model to show that the administration of the sigma-1 agonists dextromethorphan (a widely used antitussive drug), PRE-084 (a standard sigma-1 ligand), and pridopidine (a selective drug being investigated in clinical trials for the treatment of neurodegenerative diseases) enhances PGE2-induced mechanical hyperalgesia. Superficial plantar incision induced transient weight-bearing asymmetry at early time points, but the mice appeared to recover at 24 h, despite noticeable edema and infiltration of neutrophils (a well-known cellular source of PGE2) at the injured site.

View Article and Find Full Text PDF

Pridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models.

View Article and Find Full Text PDF

Background: No pharmacological treatment has been demonstrated to provide a functional benefit for persons with Huntington's disease (HD). Pridopidine is a sigma-1-receptor agonist shown to have beneficial effects in preclinical models of HD.

Objective: To further explore the effect of pridopidine on Total Functional Capacity (TFC) in the recent double-blind, placebo-controlled PRIDE-HD study.

View Article and Find Full Text PDF

Targeting the Sigma-1 Receptor via Pridopidine Ameliorates Central Features of ALS Pathology in a SOD1 Model.

Cell Death Dis

March 2019

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting both the upper and lower motor neurons (MNs), with no effective treatment currently available. Early pathological events in ALS include perturbations in axonal transport (AT), formation of toxic protein aggregates and Neuromuscular Junction (NMJ) disruption, which all lead to axonal degeneration and motor neuron death. Pridopidine is a small molecule that has been clinically developed for Huntington disease.

View Article and Find Full Text PDF

Background: Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!