Neuronal dynamics supporting formation and recombination of cross-modal olfactory-tactile association in the rat hippocampal formation.

J Neurophysiol

Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon, Lyon , France.

Published: March 2018

The present study is aimed at describing some aspects of the neural dynamics supporting discrimination of olfactory-tactile paired-associated stimuli during acquisition of new pairs and during recombination of previously learned pairs in the rat. To solve the task, animals have to identify one odor-texture (OT) combination associated with a food reward among three cups with overlapping elements. Previous experiments demonstrated that the lateral entorhinal cortex (LEC) is involved in the processes underlying OT acquisition, whereas the dorsal hippocampus (DH) is selectively involved in the recombination processes. In the present study, local field potentials were recorded form the anterior piriform cortex (aPC), LEC, and DH in freely moving rats performing these tasks. Signal analysis focused on theta (5-12 Hz)- and beta-band (15-40 Hz) oscillatory activities in terms of both amplitude and synchrony. The results show that cue sampling was associated with a significant increase in the beta-band activity during the choice period in both the aPC and the LEC, and is modulated by level of expertise and the animal's decision. In addition, this increase was significantly higher during the recombination compared with the acquisition of the OT task, specifically when animals had to neglect the odor previously associated with the reward. Finally, a significant decrease in coherence in the theta band between LEC and DH was observed in the recombination but not in the acquisition task. These data point to specific neural signatures of simple and complex cross-modal sensory processing in the LEC-DH complex. NEW & NOTEWORTHY This study is the first to describe electrophysiological correlates of cross-modal olfactory-tactile integration in rats. Recordings were sought from the lateral entorhinal cortex and the dorsal hippocampus because previous studies have shown their role in the formation and in the recombination of previously learned associations. We identified specific oscillatory-evoked neural responses in these structures in the theta and beta bands, which characterize acquisition and recombination of cross-modal olfactory-tactile pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00666.2017DOI Listing

Publication Analysis

Top Keywords

cross-modal olfactory-tactile
12
dynamics supporting
8
formation recombination
8
recombination cross-modal
8
recombination learned
8
task animals
8
lateral entorhinal
8
entorhinal cortex
8
dorsal hippocampus
8
apc lec
8

Similar Publications

Neuronal dynamics supporting formation and recombination of cross-modal olfactory-tactile association in the rat hippocampal formation.

J Neurophysiol

March 2018

Team CMO: Olfaction from Coding to Memory, Centre de Recherche en Neuroscience de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Université de Lyon, Lyon , France.

The present study is aimed at describing some aspects of the neural dynamics supporting discrimination of olfactory-tactile paired-associated stimuli during acquisition of new pairs and during recombination of previously learned pairs in the rat. To solve the task, animals have to identify one odor-texture (OT) combination associated with a food reward among three cups with overlapping elements. Previous experiments demonstrated that the lateral entorhinal cortex (LEC) is involved in the processes underlying OT acquisition, whereas the dorsal hippocampus (DH) is selectively involved in the recombination processes.

View Article and Find Full Text PDF

Respective role of the dorsal hippocampus and the entorhinal cortex during the recombination of previously learned olfactory-tactile associations in the rat.

Learn Mem

January 2017

Centre de Recherche en Neuroscience de Lyon, Team CMO, CNRS UMR 5292, INSERM U 1028, Université Lyon 1, Université de Lyon, 69366 Lyon, France.

The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The task consisted in discriminating one baited cup among three, each of them presenting overlapping olfactory or tactile elements.

View Article and Find Full Text PDF

Involvement of the lateral entorhinal cortex for the formation of cross-modal olfactory-tactile associations in the rat.

Hippocampus

July 2014

Centre de Recherche en Neurosciences de Lyon, Team Olfaction: From Coding to Memory, UMR CNRS 5292INSERM U 1028, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.

While the olfactory and tactile vibrissal systems have been extensively studied in the rat, the neural basis of these cross-modal associations is still elusive. Here we tested the hypothesis that the lateral entorhinal cortex (LEC) could be particularly involved. In order to tackle this question, we have developed a new behavioral paradigm which consists in finding one baited cup (+) among three, each of the cups presenting a different and specific odor/texture (OT) combination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!