Water vascular system architecture in an Ordovician ophiuroid.

Biol Lett

Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA.

Published: December 2017

Understanding the water vascular system (WVS) in early fossil echinoderms is critical to elucidating the evolution of this system in extant forms. Here we present the first report of the internal morphology of the water vascular system of a stem ophiuroid. The radial canals are internal to the arm, but protected dorsally by a plate separate to the ambulacrals. The canals zig-zag with no evidence of constrictions, corresponding to sphincters, which control pairs of tube feet in extant ophiuroids. The morphology suggests that the unpaired tube feet must have operated individually, and relied on the elasticity of the radial canals, lateral valves and tube foot musculature alone for extension and retraction. This arrangement differs radically from that in extant ophiuroids, revealing a previously unknown Palaeozoic configuration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746540PMC
http://dx.doi.org/10.1098/rsbl.2017.0635DOI Listing

Publication Analysis

Top Keywords

water vascular
12
vascular system
12
radial canals
8
tube feet
8
extant ophiuroids
8
system
4
system architecture
4
architecture ordovician
4
ordovician ophiuroid
4
ophiuroid understanding
4

Similar Publications

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes.

Br J Hosp Med (Lond)

December 2024

Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy (CIPN) affects 29%-68% of patients undergoing anticancer treatments within the first month. Traditional cryotherapy methods, such as frozen gloves, can pose risks. This study evaluates the cool-water electric circulation seat (CECS), which maintains a constant 15°C, as a safer alternative.

View Article and Find Full Text PDF

Study on the Therapeutic Effects of Bisdemethoxycurcumin on a Cerebral Amyloid Angiopathy Mouse Model Established via Chronic Treatment With Five Vascular Risk Factors.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University Of South China, Hengyang, Hunan, China.

Background And Purpose: Cerebral amyloid angiopathy (CAA) is recognized as a major contributor to progressive cognitive decline and cerebral hemorrhages in the elderly population. Currently, there is a global shortage of safe and effective treatments for this condition. Bisdemethoxycurcumin (BDMC) has been demonstrated to exhibit pharmacological effects with anti-Aβ toxicity properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!