Genetic bypass of essential RNA repair enzymes in budding yeast.

RNA

Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.

Published: March 2018

RNA repair enzymes catalyze rejoining of an RNA molecule after cleavage of phosphodiester linkages. RNA repair in budding yeast is catalyzed by two separate enzymes that process tRNA exons during their splicing and mRNA exons during activation of the unfolded protein response (UPR). The RNA ligase Trl1 joins 2',3'-cyclic phosphate and 5'-hydroxyl RNA fragments, creating a phosphodiester linkage with a 2'-phosphate at the junction. The 2'-phosphate is removed by the 2'-phosphotransferase Tpt1. We bypassed the essential functions of and in budding yeast by expressing "prespliced," intronless versions of the 10 normally intron-containing tRNAs, indicating this repair pathway does not have additional essential functions. Consistent with previous studies, expression of intronless tRNAs failed to rescue the growth of cells with deletions in components of the SEN complex, implying an additional essential role for the splicing endonuclease. The Δ and Δ mutants accumulate tRNA and splicing intermediates indicative of RNA repair defects and are hypersensitive to drugs that inhibit translation. Failure to induce the unfolded protein response in Δ cells grown with tunicamycin is lethal owing to their inability to ligate after its cleavage by Ire1. In contrast, Δ mutants grow in the presence of tunicamycin despite reduced accumulation of spliced mRNA. We optimized a PCR-based method to detect RNA 2'-phosphate modifications and show they are present on ligated mRNA. These RNA repair mutants enable new studies of the role of RNA repair in cellular physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824351PMC
http://dx.doi.org/10.1261/rna.061788.117DOI Listing

Publication Analysis

Top Keywords

rna repair
24
budding yeast
12
rna
10
repair enzymes
8
unfolded protein
8
protein response
8
essential functions
8
additional essential
8
repair
7
genetic bypass
4

Similar Publications

Understanding the impact of spatial immunophenotypes on the survival of endometrial cancer patients through the ProMisE classification.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.

Objectives: We focused on how the immunophenotypes based on the distribution of CD8-positive tumor-infiltrating lymphocytes (TILs) relate to the endometrial cancer (EC) molecular subtypes and patients' prognosis.

Patients And Methods: Two cohorts of EC patients (total n = 145) were analyzed and categorized using the Molecular Risk Classifier for Endometrial cancer (ProMisE): POLEmut (POLE mutation), MMRd (mismatch repair deficiency), NSMP (no specific molecular profile), and p53abn (p53 abnormality). CD8-positive TILs, within the central tumor and the invasive margin, were examined by using immunohistochemical staining and advanced image-analysis software.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India.

Background: Vascular Dementia (VaD) is the second most prevalent cause of dementia, arising from the blockage of blood vessels in the brain. One event responsible for the blockage or narrowing of small blood vessels is transient ischemic attack (TIA), and these changes resolve within 24 hours in humans. The molecular mechanism underlying these changes in recovery in small vessels still needs to be investigated.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).

View Article and Find Full Text PDF

Background: To date, Alzheimer's disease (AD) research has principally focused on neurons. In contrast, recent studies suggest that genetic mechanisms drive microglia towards prolonged inflammation in AD brains, exacerbating neurodegeneration. Indeed, many of the 70 disease-associated loci uncovered with genome-wide association studies (GWAS) reside near genes related to microglial function, such as TREM2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

ADBS Lab, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India.

Background: What does neurodevelopment look like when neurodegeneration is the outcome - this is overarching theme of investigations currently ongoing in our lab. The E4 isoform of ApoE protein is the most consistently replicated risk factor in Alzheimer's Disease (AD). And yet, much remains unknown about the biological pathways that connect APOE4 genotype with the development of pathology that eventually leads to AD, nor do we know how early in life these cellular alterations begin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!