AI Article Synopsis

  • Renal cell carcinoma (RCC) is a rare but aggressive cancer, with challenges like drug resistance and side effects hindering treatment effectiveness.
  • Recent studies have highlighted the NF-κB transcription factor, particularly NF-κB1 (p50), as crucial for RCC progression and metastasis.
  • This study shows that targeting NF-κB1 with shRNA in mouse RCC cells reduces growth and induces apoptosis, suggesting that inhibiting NF-κB1 could be a promising therapeutic strategy for RCC.

Article Abstract

Renal cell carcinoma (RCC) accounts for approximately 2%-3% of human malignancies and is the most aggressive among urologic tumors. Biological heterogeneity, drug resistance, and chemotherapy side effects are the biggest obstacles to the effective treatment of RCC. The NF-κB transcription factor is one of several molecules identified to be responsible for the aggressive phenotype of this tumor. In the past decade, several studies have demonstrated the activation of NF-κB in RCC, and many have implicated NF-κB1 (p50) as an important molecule in tumor progression and metastasis. In the present study, a lentivirus was used to deliver shRNA targeting NF-κB1 into mouse RCC (Renca) cells. It was determined that the knockdown of the NF-κB1 gene led to a reduction in cell proliferation and late apoptosis/necrosis in vitro. Flow cytometry analysis demonstrated G2/M arrest in the cells. In addition, immunoblotting analysis revealed a significant increase in cyclin B1 and Bax. In vivo experiments showed that Renca-shRNA-NF-κB1 cells have significantly diminished tumorigenicity. Moreover, immunohistochemical analysis revealed an increase in necrotic areas of Renca-shRNA-NF-κB1 tumors. Thus, this study indicates that downregulation of NF-κB1 can suppress RCC tumorigenesis by inducing late apoptosis/necrosis. Therefore, NF-κB1 may be a potential therapeutic target for RCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844753PMC
http://dx.doi.org/10.3727/096504017X15120379906339DOI Listing

Publication Analysis

Top Keywords

knockdown nf-κb1
8
renal cell
8
cell carcinoma
8
late apoptosis/necrosis
8
analysis revealed
8
revealed increase
8
rcc
6
nf-κb1
5
nf-κb1 shrna
4
shrna inhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!