Low-permeability lenses represent potential sources of long-term release when filled from contaminant solute through direct contact with dissolved plumes. The redistribution of contaminant from low to high permeability aquifer zones (Back-Diffusion) was studied. Redistribution causes a long plume tail, commonly regarded as one of the main obstacles to effective groundwater remediation. Laboratory tests were performed to reproduce the redistribution process and to investigate the effect of pumping water on the remediation time of these contaminated low-permeability lenses. The test section used is representative of clay/silt lenses (k≈1∗10m/s/k≈1∗10m/s) in a sand aquifer (k≈1∗10m/s). Hence, an image analysis procedure was used to estimate the diffusive flux of contaminant released by these low-permeability zones. The proposed technique was validated performing a mass balance of a lens saturated by a known quantity of tracer. For each test, performed using a different groundwater velocity, the diffusive fluxes of contaminant released by lenses were compared and the remediation times of the low-permeability zones calculated. For each lens, the obtained remediation timeframes were used to define an analytical relation vs groundwater velocity and the coefficients of these relations were matched to grain size of the low-permeability lenses. Results show that an increase of the velocity field is not useful to diminish the total depletion times as the process mainly diffusive. This is significant when the remediation approach relies on pumping technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.347DOI Listing

Publication Analysis

Top Keywords

groundwater velocity
12
low-permeability lenses
12
image analysis
8
contaminant released
8
low-permeability zones
8
low-permeability
6
contaminant
5
lenses
5
remediation
5
contaminant back-diffusion
4

Similar Publications

Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.

View Article and Find Full Text PDF

Hydrochemistry characteristics and genesis of shallow groundwater in diverse industrial agglomeration areas in typical alluvial plain of the Yellow River.

Sci Total Environ

January 2025

State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Article Synopsis
  • The study investigates the groundwater quality and its hydrochemical characteristics in the Yellow River area, highlighting that 78% of samples show high salinity and alkalinity, making them unsuitable for irrigation.
  • It identifies key sources of groundwater contamination, attributing high levels of metals like Al, Mn, Zn, and Pb to industrial activities, with natural weathering and dissolution of minerals also contributing to chemical composition.
  • The research emphasizes the influence of various factors, including the type of industry and groundwater velocity, on pollution levels, aiming to provide insights for mitigating groundwater pollution in similar industrial regions.
View Article and Find Full Text PDF

Laboratory experiments and modeling of the transport of Sr, Cs, U, Pu in fractures under high flow velocity.

J Environ Radioact

December 2024

School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China. Electronic address:

The presence of fractures in the surrounding rocks of a radioactive waste disposal repository is recognized as a potential pathway for radionuclides to enter the public domain. As is well known, radionuclides transported by groundwater exhibit increased mobility in fractures, with flow velocities significantly faster than those in the pore spaces of the surrounding rock matrix. The principal objective of this study is to investigate the mobility of Sr, Cs, U, and Pu in fractures and their fate in the groundwater environment.

View Article and Find Full Text PDF

We present a new seismotomography investigation providing a 3-D overall model of Vp, Vs and Vp/Vs for Mt. Etna, the largest and most active volcano in Europe. We estimated and jointly evaluated P- and S-wave velocity patterns together with the Vp/Vs ratio, particularly useful to discriminate the presence of groundwater, gas, and melts and thus very precious for volcano investigations.

View Article and Find Full Text PDF

Influence of kinetic air-water interfacial partitioning on unsaturated transport of PFAS in sandy soils.

Sci Total Environ

December 2024

Civil & Environmental Engineering Department, Hydrologic Science and Engineering Program, Hydrologic Science & Engineering Program, ReNuWit-The Urban Water Engineering Research Center, Colorado School of Mines, Golden, CO 80401, USA. Electronic address:

Article Synopsis
  • - This study explores how kinetic air-water partitioning influences the movement of PFAS (perfluoroalkyl substances) in sandy soil, particularly under dynamic unsaturated flow situations.
  • - Short-chain PFAS act like conservative tracers with minimal partitioning, whereas longer-chain PFAS show non-equilibrium behavior, and the presence of air-water interfaces significantly affects their transport.
  • - The research highlights that considering kinetic partitioning processes can more than double the mass flux of PFOS to groundwater, indicating a major impact on PFAS concentrations in porewater.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!