Triple-negative breast cancer (TNBC) is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2), which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2017.11.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!