α-Actinins, a family of critical cytoskeletal actin-binding proteins that usually exist as anti-parallel dimers, play crucial roles in organizing the framework of the cytoskeleton through crosslinking the actin filaments, as well as in focal adhesion maturation. However, the molecular mechanisms underlying its functions are unclear. Here, by mechanical manipulation of single human α-actinin 1 using magnetic tweezers, we determined the mechanical stability and kinetics of the functional domains in α-actinin 1. Moreover, we identified the force-dependence of vinculin binding to α-actinin 1, with the demonstration that force is required to expose the high-affinity binding site for vinculin binding. Further, a role of the α-actinin 1 as molecular shock absorber for the cytoskeleton network is revealed. Our results provide a comprehensive analysis of the force-dependent stability and interactions of α-actinin 1, which sheds important light on the molecular mechanisms underlying its mechanotransmission and mechanosensing functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2017.11.040 | DOI Listing |
J Chem Inf Model
January 2025
Geneis (Beijing) Co. Ltd., Beijing 100102, China.
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.
View Article and Find Full Text PDFBlood Adv
January 2025
Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States.
Natural enzymes are powerful catalysts, reducing the apparent activation energy for reactions and enabling chemistry to proceed as much as 10 times faster than the corresponding solution reaction. It has been suggested for some time that, in some cases, quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces mechanisms below the barrier, or tunneling mechanisms.
View Article and Find Full Text PDFSci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!