Municipal wastewater effluent is a major source of aquatic pollution and has potential to impact cellular energy metabolism. However, it is poorly understood whether wastewater exposure impacts whole-animal metabolism and whether this can be accommodated with adjustments in respiratory physiology. We caged bluegill sunfish (Lepomis macrochirus) for 21 days at two sites downstream (either 50 or 830 m) from a wastewater treatment plant (WWTP). Survival was reduced in fish caged at both downstream sites compared to an uncontaminated reference site. Standard rates of O consumption increased in fish at contaminated sites, reflecting a metabolic cost of wastewater exposure. Several physiological adjustments accompanied this metabolic cost, including an expansion of the gill surface area available for gas exchange (reduced interlamellar cell mass), a decreased blood-O affinity (which likely facilitates O unloading at respiring tissues), increased respiratory capacities for oxidative phosphorylation in isolated liver mitochondria (supported by increased succinate dehydrogenase, but not citrate synthase, activity), and decreased mitochondrial emission of reactive oxygen species (ROS). We conclude that exposure to wastewater effluent invokes a metabolic cost that leads to compensatory respiratory improvements in O uptake, delivery, and utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b03745 | DOI Listing |
Bioresour Technol
January 2025
School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75 % nitrogen removal in both reactors.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Synergistic activation of persulfate by photothermal and solid catalysts is an effective method for degrading organic pollutants. However, the batch reaction mode not only fails to fully utilize photothermal, but also makes it hard to separate the solid catalysts from the reaction solution. In this work, a shallow continuous flow way of effluent was set up for synergistic activation of peroxydisulfate (PDS) by photothermal and FeS-loaded air-laid cloth (FeS-ALC).
View Article and Find Full Text PDFChemosphere
January 2025
Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/HO treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy. Electronic address:
This study investigated the applicability of a protein-like fluorescence sensor for wastewater quality monitoring. Several wastewater matrices, including raw, primary, secondary and tertiary effluents from three different wastewater treatment plants were used. Furthermore, the sensor was tested for the monitoring of quaternary effluent in a pilot scale plant installed downstream of a water reuse facility.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!