Metabolomics experiments identify metabolites whose abundance varies as the conditions under study change. Pathway enrichment tools help in the identification of key metabolic processes and in building a plausible biological explanation for these variations. Although several methods are available for pathway enrichment using experimental evidence, metabolomics does not yet have a comprehensive overview in a network layout at multiple molecular levels. We propose a novel pathway enrichment procedure for analysing summary metabolomics data based on sub-network analysis in a graph representation of a reference database. Relevant entries are extracted from the database according to statistical measures over a null diffusive process that accounts for network topology and pathway crosstalk. Entries are reported as a sub-pathway network, including not only pathways, but also modules, enzymes, reactions and possibly other compound candidates for further analyses. This provides a richer biological context, suitable for generating new study hypotheses and potential enzymatic targets. Using this method, we report results from cells depleted for an uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG as a knowledge base. Partial validation is provided with NMR-based tracking of 13C glucose labelling of these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718512PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189012PLOS

Publication Analysis

Top Keywords

pathway enrichment
12
metabolomics data
8
null diffusion-based
4
enrichment
4
diffusion-based enrichment
4
metabolomics
4
enrichment metabolomics
4
data metabolomics
4
metabolomics experiments
4
experiments identify
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!