Tuning the Viscoelastic-Gel Transition of Single-Wall Carbon Nanotubes Embedded in pH-Responsive Polyelectrolyte Solutions.

J Phys Chem B

Instituto de Física, Universidad Nacional Autónoma de México , P.O. Box 20-364, 01000, México City, México.

Published: January 2018

We present the detailed rheological changes that occur when small quantities of single-wall carbon nanotubes are dispersed in a poly(acrylic acid) water solution, around the overlap polymer concentration, up to the gel point. Here, pH is used to tune the gel formation. Suspensions of nanotubes at pH ≤ 5 are exfoliated and dispersed by the polymer. Contacts between the nanotubes are mainly through polymer entangling, and the suspension is viscoelastic. At pH > 5, the polymer is charged, and the solution is not a good solvent for the nanotubes anymore. Nanotube bundles covered with polymer are formed and mechanically percolate along the fluid until they become arrested. As a consequence, the rheological behavior is dominated by a mesoscale superstructure formed by nanotubes and polymer, where viscoelasticity is lost and the suspension becomes elastic. At pH ≥ 9, the surroundings for the nanotubes are worse, bundles and flocs grow to a larger extent, and they can be observable by scanning microscopies. When the suspension becomes a critical gel, the relaxation moduli can be modeled by a power law in the frequency domain in agreement with the model developed by Winter and co-workers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b09112DOI Listing

Publication Analysis

Top Keywords

single-wall carbon
8
carbon nanotubes
8
nanotubes polymer
8
nanotubes
7
polymer
6
tuning viscoelastic-gel
4
viscoelastic-gel transition
4
transition single-wall
4
nanotubes embedded
4
embedded ph-responsive
4

Similar Publications

A mirror-image experiment: Sorting carbon nanotubes by L-DNA.

PNAS Nexus

January 2025

Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.

DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

Complexity in the Photofunctionalization of Single-Wall Carbon Nanotubes with Hypochlorite.

ACS Nano

January 2025

Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States.

The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy.

View Article and Find Full Text PDF

Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities.

ACS Nano

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge.

View Article and Find Full Text PDF

Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in the speed of identifying solution parameters leading to more efficient ATPE separations with greater fidelities. In this feature article, we review these developments and discuss their vast potential to further advance SWCNT separations science towards the optimization of production scale processes and the full realization of SWCNT-enabled technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!