A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). | LitMetric

14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs).

FEBS J

Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA.

Published: February 2018

The salt-inducible kinase (SIK) family regulates cellular gene expression via the phosphorylation of cAMP-regulated transcriptional coactivators (CRTCs) and class IIA histone deacetylases, which are sequestered in the cytoplasm by phosphorylation-dependent 14-3-3 interactions. SIK activity toward these substrates is inhibited by increases in cAMP signaling, although the underlying mechanism is unclear. Here, we show that the protein kinase A (PKA)-dependent phosphorylation of SIKs inhibits their catalytic activity by inducing 14-3-3 protein binding. SIK1 and SIK3 contain two functional PKA/14-3-3 sites, while SIK2 has four. In keeping with the dimeric nature of 14-3-3s, the presence of multiple binding sites within target proteins dramatically increases binding affinity. As a result, loss of a single 14-3-3-binding site in SIK1 and SIK3 abolished 14-3-3 association and rendered them insensitive to cAMP. In contrast, mutation of three sites in SIK2 was necessary to fully block cAMP regulation. Superimposed on the effects of PKA phosphorylation and 14-3-3 association, an evolutionary conserved domain in SIK1 and SIK2 (the so called RK-rich region; 595-624 in hSIK2) is also required for the inhibition of SIK2 activity. Collectively, these results point to a dual role for 14-3-3 proteins in repressing a family of Ser/Thr kinases as well as their substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799007PMC
http://dx.doi.org/10.1111/febs.14351DOI Listing

Publication Analysis

Top Keywords

14-3-3 proteins
8
sik1 sik3
8
sites sik2
8
14-3-3 association
8
14-3-3
6
proteins mediate
4
mediate inhibitory
4
inhibitory effects
4
camp
4
effects camp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!