Understanding the cycling of C and N in soils is important for maintaining soil fertility while also decreasing greenhouse gas emissions, but much remains unknown about how organic matter (OM) is stabilized in soils. We used nano-scale secondary ion mass spectrometry (NanoSIMS) to investigate the changes in C and N in a Vertisol and an Alfisol incubated for 365 days with C and N pulse labeled lucerne (Medicago sativa L.) to discriminate new inputs of OM from the existing soil OM. We found that almost all OM within the free stable microaggregates of the soil was associated with mineral particles, emphasizing the importance of organo-mineral interactions for the stabilization of C. Of particular importance, it was also found that N-rich microbial products originating from decomposition often sorbed directly to mineral surfaces not previously associated with OM. Thus, we have shown that N-rich microbial products preferentially attach to distinct areas of mineral surfaces compared to C-dominated moieties, demonstrating the ability of soils to store additional OM in newly formed organo-mineral associations on previously OM-free mineral surfaces. Furthermore, differences in N enrichment were observed between the Vertisol and Alfisol presumably due to differences in mineralogy (smectite-dominated compared to kaolinite-dominated), demonstrating the importance of mineralogy in regulating the sorption of microbial products. Overall, our findings have important implications for the fundamental understanding of OM cycling in soils, including the immobilization and storage of N-rich compounds derived from microbial decomposition and subsequent N mineralization to sustain plant growth.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.14009DOI Listing

Publication Analysis

Top Keywords

microbial products
16
mineral surfaces
12
organo-mineral associations
8
organic matter
8
understanding cycling
8
cycling soils
8
vertisol alfisol
8
n-rich microbial
8
nitrogen-rich microbial
4
products
4

Similar Publications

Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.

View Article and Find Full Text PDF

Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.

View Article and Find Full Text PDF

Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.

View Article and Find Full Text PDF

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!