Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a microfluidic platform for automatic multi-size spheroid formation within constant volume hanging droplets (HDs) from a single inlet loading of a constant cell concentration. The platform introduces three technological improvements over the existing spheroid formation platforms: 1) cell seeding control is achieved by enrichment of a cell solution rather than dilution; 2) cell seeding in each HD is fully independent and pre-programmable at the design stage; 3) the fabricated chip operates well using a hydrophobic PDMS surface, ensuring long-term storage possibility for device usage. Pre-programmed cell seeding densities at each HD are achieved using a "microfluidic funnel" layer, which has an array of cone-shaped wells with increasing apex angles acting as a metering unit. The integrated platform is designed to form, treat, stain, and image multi-size spheroids on-chip. Spheroids can be analyzed on-chip or easily transferred to conventional well plates for further processing. Empirically, enrichment factors up to 37× have been demonstrated, resulting in viable spheroids of diameters ranging from 230-420 μm and 280-530 μm for OV90 and TOV112D cell lines, respectively. We envision that microfluidic funnels and single inlet multi-size spheroid (SIMSS) chips will find broad application in 3D biological assays where size-dependent responses are expected, including chemoresponse assays, photodynamic therapy assays, and other assays involving drug transport characterization in drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7lc00970d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!