Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A layered oxychloride BiNbOCl is a visible-light responsive catalyst for water splitting, with its remarkable stability ascribed to the highly dispersive O-2p orbitals in the valence band, the origin of which, however, remains unclear. Here, we systematically investigate four series of layered bismuth oxyhalides, BiOX (X = Cl, Br, I), BiNbOX (X = Cl, Br), BiGdOX (X = Cl, Br), and SrBiOX (X = Cl, Br, I), and found that Madelung site potentials of anions capture essential features of the valence band structures of these materials. The oxide anion in fluorite-like blocks (e.g., [BiO] slab in BiNbOCl) is responsible for the upward shift of the valence band, and the degree of electrostatic destabilization changes depending on building layers and their stacking sequence. This study suggests that the Madelung analysis enables a prediction and design of the valence band structures of bismuth and other layered oxyhalides and is applicable even to a compound where DFT calculation is difficult to perform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b11497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!