Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over-harvest and landscape change are two of the greatest threats to marine ecosystems. Over-harvest may directly affect key population regulation mechanisms (e.g., density dependence), with the magnitude of the effects being further influenced by changes in landscape structure and associated resource availability. Because resource availability and conspecific density often co-vary within the natural landscape, manipulative experiments are needed to understand how changes in these two drivers may affect density dependence in wild populations. We used a common, shoaling, coral reef fish (white grunt, Haemulon plumierii) as our model species, and manipulated fish densities and landscape context of artificial reef habitats to assess the effects of each on fish condition. We found evidence of inverse density dependence, where individual condition was positively related to conspecific density; landscape context had little effect. Mean grunt condition on natural patch reefs was similar to that for our low grunt density treatment artificial reefs, possibly due to differences in fish densities or landscape context. These findings suggest that over-harvest may have detrimental effects on wild populations that extend beyond mere reductions in population size, especially for group-living species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/13-2231.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!