Precision medicine is promising for treating human diseases, as it focuses on tailoring drugs to a patient's genes, environment, and lifestyle. The need for personalized medicines has opened the doors for turning nucleic acids into therapeutics. Although gene therapy has the potential to treat and cure genetic and acquired diseases, it needs to overcome certain obstacles before creating the overall prescription drugs. Recent advancement in the life science has helped to understand the effective manipulation and delivery of genome-engineering tools better. The use of sequence-specific nucleases allows genetic changes in human cells to be easily made with higher efficiency and precision than before. Nanotechnology has made rapid advancement in the field of drug delivery, but the delivery of nucleic acids presents unique challenges. Also, designing efficient and short time-consuming genome-editing tools with negligible off-target effects are in high demand for precision medicine. In the fourth annual Biopharmaceutical Research and Development Symposium (BRDS) held at the University of Nebraska Medical Center (UNMC) on September 7-8, 2017, we covered different facets of developing tools for precision medicine for therapeutic and diagnosis of genetic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997254 | PMC |
http://dx.doi.org/10.1007/s13346-017-0457-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!