Background: Nitrogen deprivation and replenishment induces massive changes at the physiological and molecular level in the green alga , including reversible starch and lipid accumulation. Stress signal perception and acclimation involves transient protein phosphorylation. This study aims to provide the first experimental phosphoprotein dataset for the adaptation of during nitrogen depletion and recovery growth phases and its impact on lipid accumulation.
Results: To decipher the signaling pathways involved in this dynamic process, we applied a label-free in vivo shotgun phosphoproteomics analysis on nitrogen-depleted and recovered samples. 1227 phosphopeptides belonging to 732 phosphoproteins were identified and quantified. 470 phosphopeptides showed a significant change across the experimental set-up. Multivariate statistics revealed the reversible phosphorylation process and the time/condition-dependent dynamic rearrangement of the phosphoproteome. Protein-protein interaction analysis of differentially regulated phosphoproteins identified protein kinases and phosphatases, such as DYRKP and an AtGRIK1 orthologue, called CDPKK2, as central players in the coordination of translational, photosynthetic, proteomic and metabolomic activity. Phosphorylation of RPS6, ATG13, and NNK1 proteins points toward a specific regulation of the TOR pathway under nitrogen deprivation. Differential phosphorylation pattern of several eukaryotic initiation factor proteins (EIF) suggests a major control on protein translation and turnover.
Conclusion: This work provides the first phosphoproteomics dataset obtained for responses to nitrogen availability, revealing multifactorial signaling pathways and their regulatory function for biofuel production. The reproducibility of the experimental set-up allows direct comparison with proteomics and metabolomics datasets and refines therefore the current model of acclimation to various nitrogen levels. Integration of physiological, proteomics, metabolomics, and phosphoproteomics data reveals three phases of acclimation to N availability: (i) a rapid response triggering starch accumulation as well as energy metabolism while chloroplast structure is conserved followed by (ii) chloroplast degradation combined with cell autophagy and lipid accumulation and finally (iii) chloroplast regeneration and cell growth activation after nitrogen replenishment. Plastid development seems to be further interconnected with primary metabolism and energy stress signaling in order to coordinate cellular mechanism to nitrogen availability stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704542 | PMC |
http://dx.doi.org/10.1186/s13068-017-0949-z | DOI Listing |
Environ Toxicol Chem
January 2025
Savannah River Ecology Lab, University of Georgia, Aiken, SC, USA.
Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836 Japan.
Polymer-coated fertilizers, widely used in rice cultivation in Japan, contribute to reactive nitrogen management and agricultural productivity but are a source of microplastics in the environment. Here, we investigated microplastics derived from polymer-coated fertilizer (microcapsule) runoff in Japanese paddy fields at 38 sites to quantitatively assess the behavior of microcapsules in paddy fields, and to estimate the total amount of runoff and accumulation in Japan. We also examined the factors causing variations in the amount of runoff among paddy fields.
View Article and Find Full Text PDFJ Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs).
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!