ERM Proteins Play Distinct Roles in Cell Invasion by Extracellular Amastigotes of .

Front Microbiol

Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.

Published: November 2017

The protozoan parasite is the causative agent of Chagas' disease. In mammalian hosts, alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin filaments, the major host cell component responsible for EA internalization. Our results revealed that depletion of host ezrin and radixin but not moesin inhibited EAs invasion in HeLa cells. ERM are recruited and colocalize with F-actin at EA invasion sites as shown by confocal microscopy. Invasion assays performed with cells overexpressing ERM showed increased EAs invasion in ezrin and radixin but not moesin overexpressing cells. Finally, time-lapse experiments have shown altered actin dynamics leading to delayed EA internalization in ezrin and radixin depleted cells when compared to control or moesin depleted cells. Altogether, these findings show distinct roles of ERM during EAs invasion, possibly regulating F-actin dynamics and plasma membrane interplay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702390PMC
http://dx.doi.org/10.3389/fmicb.2017.02230DOI Listing

Publication Analysis

Top Keywords

ezrin radixin
12
eas invasion
12
distinct roles
8
extracellular amastigotes
8
plasma membrane
8
radixin moesin
8
depleted cells
8
invasion
6
erm
5
cells
5

Similar Publications

TNIK: A redox sensor in endothelial cell permeability.

Sci Adv

December 2024

School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, BHF Centre of Research Excellence, 125 Coldharbour Lane, King's College London, London SE5 9NU, UK.

Dysregulation of endothelial barrier integrity can lead to vascular leak and potentially fatal oedema. TNF-α controls endothelial permeability during inflammation and requires the actin organizing Ezrin-Radixin-Moesin (ERM) proteins. We identified TRAF2 and NCK-interacting kinase (TNIK) as a kinase directly phosphorylating and activating ERM, specifically at the plasma membrane of primary human endothelial cells.

View Article and Find Full Text PDF

Immunohistochemical assessment of ERM proteins (ezrin, radixin, moesin) in the ovaries of different species.

Tissue Cell

November 2024

Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria; VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria. Electronic address:

Article Synopsis
  • Ezrin, radixin, and moesin (ERM) proteins connect membrane proteins to the actin cytoskeleton, but their role in healthy reproductive tissues is under-researched.
  • A study used immunohistochemistry to analyze the distribution of these proteins in ovaries from various animal species, including mice, dogs, and pigs.
  • Findings revealed differences in localization and expression of ERM proteins across species and ovarian structures, which could enhance our understanding of their physiological roles in female reproduction.
View Article and Find Full Text PDF

O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications.

Transl Oncol

January 2025

Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer.

View Article and Find Full Text PDF

Similar to T cells and B cells, mast cell surfaces are dominated by microvilli, and like these other immune cells we showed with microvillar cartography (MC) that key signaling proteins for RBL mast cells localize to these topographical features. Although stabilization of ordered lipid nanodomains around antigen-crosslinked IgE-FcεRI is known to facilitate necessary coupling with Lyn tyrosine kinase to initiate transmembrane signaling in these mast cells, the relationship of ordered-lipid nanodomains to membrane topography had not been determined. With nanoscale resolution provided by MC, SEM and co-localization probability (CP) analysis, we found that FcεRI and Lyn kinase are positioned exclusively on the microvilli of resting mast cells in separate nano-assemblies, and upon antigen-activation they merge into overlapping populations together with the LAT scaffold protein, accompanied by elongation and merger of microvilli into ridge-like ruffles.

View Article and Find Full Text PDF

Despite extensive research, strategies to effectively combat breast cancer stemness and achieve a definitive cure remains elusive. CD44, a well-defined cancer stem cell (CSC) marker is reported to promote breast cancer tumorigenesis, metastasis, and chemoresistance. However, mechanisms leading to its enhanced expression and function is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!