Recent developments in optical tissue clearing and microscopic imaging have advanced three-dimensional (3D) visualization of intact tissues and organs at high resolution. However, to expand applications to oncology, critical limitations of current methods must be addressed. Here we describe transparent tissue tomography (T3) as a tool for rapid, three-dimensional, multiplexed immunofluorescent tumor imaging. Cutting tumors into sub-millimeter macrosections enables simple and rapid immunofluorescence staining, optical clearing, and confocal microscope imaging. Registering and fusing macrosection images yields high resolution 3D maps of multiple tumor microenvironment components and biomarkers throughout a tumor. The 3D maps can be quantitatively evaluated by automated image analysis. As an application of T3, 3D mapping and analysis revealed a heterogeneous distribution of programmed death-ligand 1 (PD-L1) in Her2 transgenic mouse mammary tumors, with high expression limited to tumor cells at the periphery and to CD31 vascular endothelium in the core. Also, strong spatial correlation between CD45 immune cell distribution and PD-L1 expression was revealed by T3 analysis of the whole tumors. Our results demonstrate that a tomographic approach offers simple and rapid access to high-resolution three-dimensional maps of the tumor immune microenvironment, offering a new tool to examine tumor heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717053 | PMC |
http://dx.doi.org/10.1038/s41598-017-16987-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!