Shaping Chromatin in the Nucleus: The Bricks and the Architects.

Cold Spring Harb Symp Quant Biol

Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.

Published: December 2017

Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.

Download full-text PDF

Source
http://dx.doi.org/10.1101/sqb.2017.82.033753DOI Listing

Publication Analysis

Top Keywords

histone variants
8
histone chaperones
8
histone
6
shaping chromatin
4
chromatin nucleus
4
nucleus bricks
4
bricks architects
4
architects chromatin
4
chromatin organization
4
organization nucleus
4

Similar Publications

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.

PLoS Genet

January 2025

Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.

Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.

View Article and Find Full Text PDF

Background: X-linked intellectual disability (XLID) is a genetically heterogeneous disorder that results in cognitive impairment and developmental delays. Mutations in the KDM5C gene have been identified as a causative factor in XLID. This study aimed to identify novel variants associated with XLID and to investigate the clinical and genetic characteristics of XLID patients with mutations in the KDM5C gene.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Loss of KAT6B causes premature ossification and promotes osteoblast differentiation during development.

Dev Biol

January 2025

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:

The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!