Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2017.11.050 | DOI Listing |
Int J Mol Sci
December 2024
Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA.
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Internal Medicine, Erasmus Medical Center (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
Consuming a "modern" Western diet and overnutrition may increase insulin secretion. Additionally, nutrition-mediated hyperinsulinemia is a major driver of ectopic fat deposition. The global prevalence of metabolic syndrome is high and growing.
View Article and Find Full Text PDFJ Clin Med
December 2024
Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria.
Lipedema is a subcutaneous adipose tissue disorder mainly affecting women. Its progressive nature often requires high-volume liposuction for efficient pain reduction. However, aspiration volumes of more than 5 L within a single session may lead to a variety of complications.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.
Background: Lymphedema represents a frequent cause of disability for patients undergoing oncological treatments and, being a chronic, non-reversible pathology, requires targeted and continuous rehabilitation treatments. To date, the studies available on the use of ultrasound in patients with lymphedema mainly report descriptive data; therefore, with this study, we wanted to describe in a more objective way the typical ultrasound alterations found in these patients, measuring the thickness of the different superficial structures, and defining subcutis echogenicity.
Methods: 14 patients affected by secondary lymphedema of the upper limbs were enrolled in this cross-sectional observational study (12 had breast cancer and 2 with melanoma as their primary diagnosis).
Antioxidants (Basel)
December 2024
Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil.
Obesity is characterized by an imbalance between energy intake and expenditure that triggers abnormal growth of adipose tissues. Dimethyl fumarate (DMF) and its primary active metabolite, monomethyl fumarate (MMF), are Nrf2 activators and have been recognized as strategic antioxidants. This study aimed to evaluate the potential of MMF and DMF to interfere with adipogenesis and obesity, and identify the molecular mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!