Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis.

Fish Shellfish Immunol

Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy. Electronic address:

Published: February 2018

Autophagy is a highly conserved and regulated catabolic process involved in maintaining cell homeostasis in response to different stressors. The autophagic machinery is also used as an innate immune mechanism against microbial infection. In invertebrates, that lack acquired immunity, autophagy may thus play a key role in the protection against potential pathogens. In aquatic molluscs, evidence has been provided for induction of autophagy by starvation and different environmental stressors; however, no information is available on autophagic pathways in the immune cells, the hemocytes. In this work, the autophagic processes were investigated in the hemocytes of the marine bivalve, the mussel Mytilus galloprovincialis. The effects of classical inducers/inhibitors of mammalian autophagy were first tested. Rapamycin induced a decrease in lysosomal membrane stability-LMS that was prevented by the autophagy inhibitor Wortmannin. Increased MDC fluorescence and expression of LC3-II were also observed. Moreover, responses to in vitro challenge with the bivalve pathogen Vibrio tapetis were evaluated. Mussel hemocytes were unable to activate the immune response towards V. tapetis; however, bacterial challenge induced a moderate decrease in LMS, corresponding to lysosomal activation but no cytotoxicity; the effect was prevented by Wortmannin. TEM observations showed that V. tapetis resulted in rapid formation of autophagosomes and autolysosomes. Accordingly, increased LC3-II expression, decreased levels of phosphorylated mTor and of p62 were observed. The results represent the first evidence for autophagic processes in bivalve hemocytes in response to bacterial challenge, and underline the protective role of autophagy towards potential pathogenic vibrios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2017.12.003DOI Listing

Publication Analysis

Top Keywords

autophagic processes
12
mytilus galloprovincialis
8
vibrio tapetis
8
stressors autophagic
8
bacterial challenge
8
autophagy
6
autophagic
5
hemocytes
5
processes mytilus
4
galloprovincialis hemocytes
4

Similar Publications

To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.

View Article and Find Full Text PDF

Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!