Peptidoglycan recognition proteins (PGRPs) are indispensable molecules in innate immunity due to their prominent function in sensing and eliminating invading microorganisms. In the present study, a short type PGRP from razor clam Solen grandis (SgPGRP-S1) was recombinantly expressed and purified to investigate its potential function in innate immunity. As a pattern recognition receptor, recombinant SgPGRP-S1 (rSgPGRP-S1) specifically bind Lys-type and Dap-type peptidoglycan in vitro, but not lipopolysaccharide or β-glucan. The peptidoglycan binding ability of rSgPGRP-S1 resulted in significant agglutination activity against Gram-negative Escherichia coli and Listonella anguillarum, as well as Gram-positive Micrococcus luteus. Furthermore, rSgPGRP-S1 was bactericidal, significantly suppressing the growth of both E. coli and Gram-positive Staphylococcus aureus. The protein also exhibited strong amidase activity and degraded bacterial peptidoglycan in the presence of Zn, suggesting amidase activity might contribute to SgPGRP-S1 antibacterial activity. These results indicate SgPGRP-S1 is multifunctional in innate immunity, mediating both immune recognition and bacteria elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2017.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!