We selected and investigated nine G-quadruplex (G4)-forming aptamers originally designed against different proteins involved in the regulation of cellular proliferation (STAT3, nucleolin, TOP1, SP1, VEGF, and SHP-2) and considered to be potential anticancer agents. We showed that under physiological conditions all the aptamers form stable G4s of different topology. G4 aptamers designed against STAT3, nucleolin and SP1 inhibit STAT3 transcriptional activity in human breast adenocarcinoma MCF-7 cells, and all the studied aptamers inhibit TOP1-mediated relaxation of supercoiled plasmid DNA. STAT3 inhibition by G4 aptamer designed against SP1 protein provides a new explanation for the SP1 and STAT3 crosstalk described recently. We found some correlation between G4-mediated inhibition of the DNA replication and TOP1 activity. Four G4 aptamers from our dataset that appeared to be the strongest TOP1 inhibitors most efficiently decreased de novo DNA synthesis, by up to 79-87%. Seven G4 aptamers demonstrated significantly higher antiproliferative activity on human breast adenocarcinoma MCF-7 cells than on immortalized mammary epithelial MCF-10A cells. Pleiotropic properties of G4 aptamers and their high specificity against cancer cells observed for the majority of the studied G4 aptamers allowed us to present them as promising candidates for multi-targeted cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2017.11.020DOI Listing

Publication Analysis

Top Keywords

antiproliferative activity
8
cancer cells
8
aptamers
8
stat3 nucleolin
8
activity human
8
human breast
8
breast adenocarcinoma
8
adenocarcinoma mcf-7 cells
8
studied aptamers
8
stat3
5

Similar Publications

Fungal lectins show differential antiproliferative activity against cancer cell lines.

Int J Biol Macromol

December 2024

BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", University of La Laguna, La Laguna, Spain.

Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.

View Article and Find Full Text PDF

Background: The present study aimed to comprehensively evaluate the anticancer, anti-inflammatory, and antioxidant properties of Globularia cordifolia L.

Samples: The plant material was collected and extracted using the maceration method. Antioxidant activities were assessed through DPPH (i.

View Article and Find Full Text PDF

Grape pomace (GP), a by-product of the wine supply chain process, contains bioactive molecules with known healthy properties. This study examines the impact of different extraction techniques on three GPs of Aglianico cultivar [Cantine del Notaio, Barile, and Torrecuso]. Five eco-friendly extractive techniques [maceration (MAC), digestion (DIG), accelerated solvent extraction (ASE), microwaves (MW), and ultrasound (US)] were used with 50 % ethanol/water as solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!