Evaluating the oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol in periodontal regeneration using periodontal ligament stem cells and alveolar bone healing models.

Stem Cell Res Ther

Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, South Korea.

Published: December 2017

Background: Oxysterols, oxygenated by-products of cholesterol biosynthesis, play roles in various physiological and pathological systems. However, the effects of oxysterols on periodontal regeneration are unknown. This study investigated the effects of the specific oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol (SS) on the regeneration of periodontal tissues using in-vitro periodontal ligament stem cells (PDLSCs) and in-vivo models of alveolar bone defect.

Methods: To evaluate the effects of the combined oxysterols on PDLSC biology, we studied the SS-induced osteogenic differentiation of PDLSCs by assessing alkaline phosphatase activity, intracellular calcium levels [Ca], matrix mineralization, and osteogenic marker mRNA expression and protein levels. To verify the effect of oxysterols on alveolar bone regeneration, we employed tooth extraction bone defect models.

Results: Oxysterols increased the osteogenic activity of PDLSCs compared with the control group. The expression of liver X receptor (LXR) α and β, the nuclear receptors for oxysterols, and their target gene, ATP-binding cassette transporter A1 (ABCA1), increased significantly during osteogenesis. Oxysterols also increased protein levels of the hedgehog (Hh) receptor Smo and the transcription factor Gli1. We further confirmed the reciprocal reaction between the LXRs and Hh signaling. Transfection of both LXRα and LXRβ siRNAs decreased Smo and Gli1 protein levels. In contrast, the inhibition of Hh signaling attenuated the LXRα and LXRβ protein levels. Subsequently, SS-induced osteogenic activity of PDLSCs was suppressed by the inhibition of LXRs or Hh signaling. The application of SS also enhanced bone formation in the defect sites of in-vivo models, showing equivalent efficacy to recombinant human bone morphogenetic protein-2.

Conclusions: These findings suggest that a specific combination of oxysterols promoted periodontal regeneration by regulating PDLSC activity and alveolar bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717822PMC
http://dx.doi.org/10.1186/s13287-017-0725-9DOI Listing

Publication Analysis

Top Keywords

alveolar bone
16
protein levels
16
periodontal regeneration
12
oxysterol combination
8
combination 22s-hydroxycholesterol
8
22s-hydroxycholesterol 20s-hydroxycholesterol
8
regeneration periodontal
8
periodontal ligament
8
ligament stem
8
stem cells
8

Similar Publications

Introduction: Periodontitis is associated with rheumatoid arthritis (RA). One hypothesis posits that this connection arises from the formation of autoantibodies against citrullinated proteins (ACPA) in inflamed gums, possibly triggered by . We previously demonstrated an increased antibody response to arginine gingipains (anti-Rgp IgG), not only in individuals with severe periodontitis compared to controls, but in RA versus controls, with an association to ACPA.

View Article and Find Full Text PDF

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Aim: To assess hard as well as soft peri-implant tissues within cases having two lost adjacent anterior teeth treated through placing either two implants with two separate crowns or only an implant along with a crown with a cantilever, and evaluating the effect of polyetheretherketone (PEEK) restoration on cantilever design up to 18 months after functional loading.

Materials And Methods: Twenty-seven participants (15 males and 12 females; mean age, 38.6 years; range 20-50 years) with missing two adjacent anterior teeth were treated with implant system (Flotecno implant system, Italy).

View Article and Find Full Text PDF

A Scientometric Exploration of the Socket-shield Technique in Oral Implantology: Trends and Spatiotemporal Dynamics.

J Contemp Dent Pract

October 2024

Department of Academic, Grupo de Bibliometría, Evaluación De Evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Faculty of Medicine, Universidad Científica del Sur, Lima, Peru, Phone: +5113171023, e-mail:

Aim: The socket-shield technique arises from the efforts to stop the dimensional changes of the bone crest and gingival tissues. This technique consists of leaving a vestibular fragment of a naturally attached root with the purpose of keeping the crestal bone nourished through the periodontium. The aim of this research was to perform a scientometric analysis of the scientific production on the socket-shield technique in oral implantology.

View Article and Find Full Text PDF

Background/purpose: Dental implants can restore both function and aesthetics in edentulous areas. However, the absence of cushioning mechanical behavior in implants may limit their clinical performance and reduce the long-term survival rates. This study aimed to establish an implant cushion mechanism that mimicked the natural periodontal ligament, utilizing the properties of composite hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!