Objective: The main objective of this study was to detect the presence of 14 respiratory viruses and atypical bacteria (Mycoplasma pneumoniae, Chlamydia pneumoniae), via polymerase chain reaction in patients under 18 years old hospitalized due to community-acquired pneumonia (CAP) from Lima, Peru.
Results: Atypical pathogens were detected in 40% (58/146); viral etiologies in 36% (52/146) and coinfections in 19% (27/146). The most common etiological agent was M. pneumoniae (n = 47), followed by C. pneumoniae (n = 11). The most frequent respiratory viruses detected were: respiratory syncytial virus A (n = 35), influenza virus C (n = 21) and parainfluenza virus (n = 10). Viral-bacterial and bacterium-bacterium coinfections were found in 27 cases. In our study population, atypical bacteria (40%) were detected as frequently as respiratory viruses (36%). The presence of M. pneumoniae and C. pneumoniae should not be underestimated as they can be commonly isolated in Peruvian children with CAP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718007 | PMC |
http://dx.doi.org/10.1186/s13104-017-3000-3 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada.
Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.
View Article and Find Full Text PDFPLoS One
January 2025
Arizona Humane Society, Phoenix, Arizona, United States of America.
SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, United States of America.
Introduction: Respiratory syncytial virus (RSV) is the leading cause of hospitalization among US infants. Characterizing service utilization during infant RSV hospitalizations may provide important information for prioritizing resources and interventions.
Objective: The objective of this study was to describe the procedures and services received by infants hospitalized during their first RSV episode in their first RSV season, in addition to what proportion of infants died during this hospitalization.
PLoS Comput Biol
January 2025
Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America.
Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!