The mono-μ-hydroxo complex {[Cu(tmpa)]-(μ-OH)} (1) can undergo reversible deprotonation at -30 °C to yield {[Cu(tmpa)]-(μ-O)} (2). This species is basic with a pK of 24.3. 2 is competent for concerted proton-electron transfer from TEMPOH, but is an intrinsically poor hydrogen atom abstractor (BDFE(OH) of 77.2 kcal/mol) based on kinetic and thermodynamic analyses. Nonetheless, DFT calculations experimentally calibrated against 2 reveal that [CuO] is likely thermodynamically viable in copper-dependent methane monoxygenase enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b10833 | DOI Listing |
Adv Sci (Weinh)
January 2025
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
A new aggregation-induced emission (AIE) luminogen is obtained by dimerizing acridin-9(10H)-one (Ac), an aggregation-caused quenching (ACQ) effect monomer via an N─N bond and forming 9H,9'H-[10,10'-biacridine]-9,9'-dione (DiAc) with D symmetry. The quenching of DiAc in solution is ascribed to the enhanced basicity promoting hydrogen bonding and then a hydrogen abstraction (HA) reaction and/or an unallowed transition in frontier orbitals with the same symmetry facilitating intersystem crossing. It is found that emissive Ac is one product of the non-emissive DiAc solution in the HA reaction activated by UV irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
Electrocatalytic nitrate reduction reaction (NORR) to harmless nitrogen (N) presents a viable approach for purifying NO-contaminated wastewater, yet most current electrocatalysts predominantly produce ammonium/ammonia (NH/NH) due to challenges in facilitating N-N coupling. This study focuses on identifying metal catalysts that preferentially generate N and elucidating the mechanistic origins of their high selectivity. Our evaluation of 16 commercially available metals reveals that only Pb, Sn, and In demonstrated substantial N selectivity (79.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!