Introduction: Oxidative stress resulting from excessive generation of Reactive Oxygen Species (ROS) plays a significant role in neurodegeneration associated with seizures/epilepsy.

Aim: To evaluate oxidative stress markers and antioxidant enzymes in Genetic Generalised Epilepsy (GGE) and to know the extent of oxidative stress induced by Anti-Epileptic Drugs (AEDs) with the time duration of treatment.

Materials And Methods: In this case-control study, 310 GGE patients (male:female=203:107), who were on AED treatment (n=235) and 75 untreated patients (male:female=49:26) along with 310 age and sex matched healthy controls were recruited. Oxidative stress markers such as Nitric Oxide (NO), Malondialdehyde (MDA) and antioxidant enzyme activities namely Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx) and Catalase (CAT) were measured spectrophotometrically.

Results: Significantly higher levels of serum NO, MDA and low levels of plasma Total Antioxidant Capacity (TAC) were found in patients as compared to controls (p<0.001) whereas erythrocyte SOD, CAT and GPx activities were found to be significantly low in patients when compared to the control group (p<0.001). Statistically significant higher levels of NO, MDA and lower levels of SOD, CAT and TAC were observed in patients subgroup, who were on AEDs for more than >5 years compared to other groups (≤ 1 year and 1-≤ 5 years) (p=0.02, p=0.01, p=0.001, p=0.01 and p=0.05 respectively). Further, significant increase in the levels of NO, MDA and decreased activities of SOD, CAT were found in treated patients compared to untreated patients (p<0.05) denoting that additional oxidative stress induced by AEDs which results in seizure recurrence and drug intractability.

Conclusion: Our study demonstrated that GGE patients have additional oxidative stress due to AEDs and decreased antioxidant enzyme activities causing an imbalance between oxidant and antioxidant status, which might contribute to the pathogenesis of GGE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713714PMC
http://dx.doi.org/10.7860/JCDR/2017/29133.10604DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
genetic generalised
8
generalised epilepsy
8
stress markers
8
oxidative
5
stress development
4
development genetic
4
epilepsy observational
4
observational study
4
study southern
4

Similar Publications

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

Formulating a Horseradish Extract in Phospholipid Vesicles to Target the Skin.

Pharmaceutics

November 2024

Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy.

: Horseradish ( L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!