Traumatic brain injury (TBI) is one of the world's leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751203 | PMC |
http://dx.doi.org/10.3390/ijms18122600 | DOI Listing |
Int J Legal Med
January 2025
Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
In forensic neuropathology, the β-amyloid precursor protein (β-APP) immunostain is used to diagnose axonal injury (AI). The two most common aetiologies are traumatic (TAI) and ischaemic (vascular; VAI). We aimed to identify background characteristics and neuropathology findings that are suggestive of TAI, VAI, or no AI in neuropathologically examined medico-legal autopsy cases.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
At present, there is no clear consensus on the impact of carbohydrate feeds on bee colony health, and comprehensive research and evaluation in this context is lacking. To comprehensively and objectively examine the health status of honeybees after consuming those carbohydrates from multiple perspectives, experimental techniques, including high-throughput sequencing of the transcriptome, proboscis extension reflex (PER), and measuring bee growth parameters were employed. This study showed that compared with honey, feeding high fructose syrup (HFS) resulted in a decrease in the survival rate and body weight of bees, while sucrose decreased the learning and memory ability of bees.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Acupuncture, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China.
Background: Optic atrophy (OA) is primarily caused by damage to the retinal pathway system, including widespread degeneration of retinal ganglion cells and axons, leading to visual impairment and blindness. Despite its clinical significance and diverse etiological factors, there is currently a lack of comprehensive bibliometric analyses exploring research trends and hotspots within this field.
Method: This study retrieved relevant literature on OA published between 2003 and 2023 from the Web of Science Core Collection database.
Epilepsy Behav Rep
March 2025
Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States.
Dynein Cytoplasmic 1 Heavy chain 1 (-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!