Background/aims: The natural polyphenol resveratrol (RSV) has been shown to ameliorate ischemia/reperfusion (I/R)-induced damage. Therefore, a rat model of I/R-induced AKI equipped with intensive monitoring was utilized to examine direct renal protection by RSV in vivo.

Methods: AKI was induced by bilateral renal clamping (45 min) followed by reperfusion (3 h). Solvent-free RSV was continuously infused intravenously (0.056 and 0.28 mg/kg) in a total volume of 7 ml/kg/h starting from 30 min before renal clamping. At a mean arterial blood pressure below 70 mmHg for more than 5 min, bolus injections of 0.5 ml 0.9% NaCl solution were administered repetitively (max. 5 ml/kg/h).

Results: No differences could be found between normoxic control groups with/without RSV. Bilateral renal clamping and subsequent reperfusion caused a progressive rise in creatinine, cystatin C, and CK, a decrease in cellular ATP content and diuresis. Infusion of RSV increased sirtuin 1 expression after ischemia/reperfusion and was associated with decreased blood pressure during ischemia and early reperfusion accompanied by an increased requirement of bolus injections as well as with increased expression of TNFα.

Conclusion: RSV did not exert protective effects on I/R-induced AKI in the present short-term in vivo rat model. The lack of protection is potentially connected to aggravation of blood pressure instability.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000485606DOI Listing

Publication Analysis

Top Keywords

rat model
12
renal clamping
12
blood pressure
12
vivo rat
8
i/r-induced aki
8
bilateral renal
8
bolus injections
8
rsv
6
resveratrol protect
4
protect ischemia-induced
4

Similar Publications

As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!