A new procedure is presented for direct generation of surface micropatterns on uniaxially oriented polyethylene (PE) films using interference holography with a nanosecond pulsed laser. An ultraviolet absorber, 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (BZT) is incorporated into PE prior to stretching to generate absorption at the wavelength of the laser. Illumination with an interference pattern in the absorption band of BZT leads to an obvious height variation in the exposed regions and consequently relief gratings are generated. The height in the exposed regions is strongly dependent on the angle between the grating direction and the film orientation direction. This phenomenon is attributed to a combination of events such as melting, entropic contraction, recrystallization, thermal evaporation of BZT, and anisotropic thermal conductivity. It is shown that the relief height increases with increasing BZT concentration and exhibits a linear dependence on the energy dose above a certain threshold. Additionally, the oriented PE films with the surface micropatterns are explored for strain sensors. The results demonstrate that small strains below 10% are monitored accurately in tensile deformation of the micropatterned, oriented PE films which makes these films potentially useful as strain sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150734 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.7b03599 | DOI Listing |
Mater Horiz
January 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.
Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.
View Article and Find Full Text PDFBiotechnol J
January 2025
Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
Salmonella is a common foodborne zoonotic pathogen that poses a great threat to human health and breeding industry. The rapid detection of Salmonella is necessary for early prevention and control. In this study, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Salmonella was developed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:
Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China. Electronic address:
Conductive hydrogel is one of the basic materials for constructing flexible sensors, and polyvinyl alcohol (PVA) hydrogel is commonly used. However, the current PVA hydrogels have apparent defects in strength and conductivity. The freeze-salting-out process based on the Hofmeister effect can effectively improve the strength of PVA.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!