Quinalizarin may be a potential chemical agent for cancer therapy, as it exerts anti‑tumour effects against a variety of different types of cancer. However, the underlying regulatory mechanism and signalling pathways of quinalizarin in lung cancer cells remains unknown. The present study sought to investigate the effects of quinalizarin on proliferation, apoptosis and reactive oxygen species (ROS) generation in lung cancer. MTT assays were used to evaluate the effects of quinalizarin on the viability of lung cancer A549, NCI‑H460 and NCI‑H23 cells. Flow cytometry was employed to evaluate the effects of quinalizarin on the cell cycle, apoptosis and ROS generation in A549 cells. Western blotting was performed to detect cell cycle and apoptosis‑associated protein expression levels in A549 cells. Quinalizarin inhibited A549, NCI‑H460 and NCI‑H23 cell proliferation and induced A549 cell cycle arrest at the G0/G1 phase. Quinalizarin induced apoptosis by upregulating the expression of B‑cell lymphoma 2 (Bcl‑2)‑associated agonist of cell death, cleaved‑caspase‑3 and cleaved‑poly (adenosine diphosphate‑ribose) polymerase, and downregulating the expression of Bcl‑2. Furthermore, quinalizarin activated mitogen‑activated protein kinase (MAPK) and p53, and inhibited the protein kinase B and signal transducer and activator of transcription‑3 (STAT3) signalling pathways. In addition, quinalizarin increased ROS generation. The ROS scavenger N‑acetyl‑L‑cysteine restored quinalizarin‑induced cell apoptosis, and inactivated the MAPK and STAT3 signalling pathways. The results of the present study demonstrated that quinalizarin induces G0/G1 phase cell cycle arrest and apoptosis via ROS mediated‑MAPK and STAT3 signalling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.8110DOI Listing

Publication Analysis

Top Keywords

signalling pathways
20
lung cancer
16
cell cycle
16
a549 cells
12
effects quinalizarin
12
ros generation
12
stat3 signalling
12
quinalizarin
11
cancer a549
8
mapk stat3
8

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!