A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF‑κB/HIF‑1α pathway in lung cancer. | LitMetric

Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF‑κB/HIF‑1α pathway in lung cancer.

Int J Mol Med

Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.

Published: February 2018

Macrophage migration inhibitory factor (MIF) is upregulated in various solid tumors, a process that is associated with tumor progression and metastasis. The present study aimed to investigate the role and the underlying mechanism of MIF in human lung cancer. Human lung cancer H358, H460, H524, H1650, H838, H1975 and A549 cell lines were used to examine the expression of MIF by real time‑quantitative polymerase chain reaction and western blotting. The lentivirus was used to overexpress MIF and the expression of MIF and hypoxia‑inducible factor 1‑α (HIF‑1α) were knocked down by shRNA or siRNA. The proliferation of cell lines was detected by MTT assay. Glucose uptake, adenosine 5'‑triphosphate (ATP) production, the glycolytic rate and lactate production were used to examine the Warburg effect in cells. BAY 11‑7082 (BAY) was used to inhibit the nuclear translocation of nuclear factor‑κB (NF‑κB), which was detected using immunofluorescence. It was revealed that overexpression of MIF promoted cell proliferation and the Warburg effect in lung cancer, whereas knockdown of MIF inhibited cell proliferation and the Warburg effect. Mechanistically, MIF promoted the Warburg effect by upregulating HIF‑1α. Knockdown of HIF‑1α largely abolished the promotional effect of MIF on the Warburg effect. Additionally, the results in the current study provided evidence that MIF regulates HIF‑1α through NF‑κB. In conclusion, the findings of the present study demonstrated that MIF is a key component in lung cancer progression through promoting the Warburg effect, and that the novel MIF/NF‑κB/HIF‑1α axis may prove to be useful for the development of new strategies for treating patients with lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2017.3277DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
mif
11
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
human lung
8
cell lines
8
expression mif
8
mif promoted
8
cell proliferation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!